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1 Laboratoire de Physique Théorique des Liquides, UMR 7600 of CNRS, Université P et
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Abstract
In quantum solids composed of fermion particles, such as helium-3 and
electrons, the low-temperature physics is governed by spin exchanges,
according to the Thouless theory. We present path integral Monte Carlo
calculations of ring exchange energies on ‘clean’ two-dimensional crystals of
both helium-3 and electrons. We see a remarkable similarity of the results for
these two ‘opposite’ systems. They are both ferromagnetic in the semi-classical
limit (strong coupling) and antiferromagnetic near the melting transition where
the relative exchange energies become equivalent. We focus here on the
importance of long-ring exchanges near the melting transition. The total energy
associated to exchanges may diverge, leading to a possible mechanism for the
melting transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In spinless solids, the low-temperature physics is governed by the low excitations, the phonons.
They provide a specific heat of (T/θD)2 in two dimensions, where the Debye temperature θD

measures the typical kinetic energy of a particle in its local potential (see figure 1 for T > 0.3 K).
Despite their ‘opposite’ types of interaction, short-range and hard-core-like for helium versus
long-range and ‘smooth-core’-like for electrons, these systems have some similarities: two-
dimensional helium-3 and electrons solidify on a triangular lattice. Because of the ‘opposite’
nature of their potentials, the solid is found at high density for helium and low density for
electrons, i.e. in the strong-coupling or semi-classical limit. Also, electrons and helium-3 are
fermions with spin- 1

2 (on the nuclei for helium-3, whereas its two electrons are in a total spin-0
state).

When T/θD � 1, the spatial degrees of freedom are frozen. But helium atoms, like
electrons, have a large zero-point motion. They eventually exchange their position, resulting
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Figure 1. The specific heat measured by Greywall for 2D helium-3 adsorbed on graphite [1]. One
can see clearly the crossover between the spin contribution in 1/T 2 and the phonon contribution
in T 2.

in a spin exchange that will modify the thermodynamics because of antisymmetry [1, 2]. The
simplest effective model describing spin exchanges is the Heisenberg model:

Hspin =
∑
〈i, j〉

J Pi j =
∑
〈i, j〉

(2JSi · S j − 1
2 ). (1)

where J is the energy associated with the spin permutation P , and the last equality holds for
spin- 1

2 . Assuming that J � θD, we look at the leading contribution of Hspin to the specific
heat at high temperatures (meaning J � T � θD) which behaves as (J/T )2 (see figure 1
now for T < 0.3 K). For T � J , the spins are free and no longer contribute to the specific
heat and the particles can be distinguishable.

There is a clear difference in energy scale of at least three orders of magnitude between the
degrees of freedom associated with the spins and those associated with the spatial coordinates.
The simple Heisenberg Hamiltonian does not reproduce experimental data on the specific heat
or the magnetic susceptibility except in the strong-coupling limit [1]. Thus the model of a
multi-spin exchange (MSE) Hamiltonian has been proposed to describe the physics of the
spins at low temperature [2, 7]. In the next section, we present a short description of the
Thouless theory and how we evaluate the coupling constants of the effective Hamiltonian from
path integral Monte Carlo (PIMC) simulations. In section 3 we will present some results and
the corresponding magnetic phase diagram. In the section 4, we analyse the data near the
melting transition. We focus especially on the convergence of the MSE model with respect
to the cycle length n. Indeed, if the coupling constants are believed to decrease exponentially
with n, the number of cycles of length n also increases exponentially.

2. The effective Hamiltonian

To determine the low-temperature wavefunction of the spins, we assume that the Thouless
theory can be applied [3]. In this approach, we first consider the spinless Hamiltonian in
spatial coordinates. At low temperature, each particle oscillates with a zero-point motion
around a lattice position Z . Eventually, during these random motions, a tunnelling process
occurs, resulting in a permutation of some particles. Because the energy scale is so different
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(J � θD), such an event is sufficiently rare that it can be studied independently of other such
events. Thus, we are left with a two-well problem in a multi-dimensional space. In this two-
well system the ground state ψ0 of energy E0 is symmetrical and the first excited state ψ1 of
energy E1 is antisymmetrical. Other states have much higher energies and can be neglected.
The diagonal density matrix element 〈Z | exp(−β H )|Z〉 and the off-diagonal density matrix
element 〈Z | exp(−β H )|P Z〉 can be expanded as

〈Z |exp(−β H )|Z〉 = ψ2
0 (Z)e−βE0 + ψ2

1 (Z)e−βE1 + · · ·
〈Z |exp(−β H )|P Z〉 = ψ2

0 (Z)e−βE0 − ψ2
1 (Z)e−βE1 + · · ·

where we have used the symmetry properties of the first two states. The ratio of these two
density matrix elements is then [6]:

FP (β) = 〈Z |exp(−β H )|P Z〉
〈Z |exp(−β H )|Z〉 = tanh(JP (β − β0)), (2)

where JP = (E1 − E0)/2 is the exchange frequency and β0 = ln |ψ1(Z)/ψ0(Z)|. The
evaluation of FP (β) leads to the exchange energy JP .

Using the mapping of a quantum system to a classical system of ‘polymers’, one can
reinterpret FP (β) as the free energy necessary to make an exchange beginning with one
arrangement of particles to lattice sites Z and ending on a permuted arrangement P Z . To
evaluate FP (β), we use the optimized method introduced by Bennett [4] to calculate free
energy differences of two chemical species A and B. Here A is the non-permuting system and
B the permuting one. The idea is to try to transform A into B and to calculate the probability
of success. More details can be found in [5–8].

The Thouless theory [3] tells us that there is an effective MSE Hamiltonian describing the
spin physics:

HMSE = −
∑

P

(−1)P JP P (3)

where JP is the energy JP associated with the permutation of the P particles. It is in finding
the eigenfunctions of this Hamiltonian that the fermion problem is encountered. In the semi-
classical limit, WKB calculations provide useful values of these exchange energies [9, 10],
especially for the Wigner crystal [11].

Using PIMC, we have evaluated the ring exchange frequencies up to nine-body
permutations. This method was successfully applied for the first time to bulk helium-3 in [6]

3. Results and magnetic phase diagram

The semi-classical (WKB) calculations, accurate in the strong-coupling limit, give exchange
energies which for the Wigner crystal vary as [9, 11]

JP = APb1/2
P r−5/4

s e−bP r1/2
s . (4)

where bPr1/2
s is the minimum value of the action integral along the exchanging path. Assuming

that bP is constant, we can put all quantum fluctuation effects in the prefactor AP . Thus this
formula tells us that the exchange energies vary exponentially with the density. This is indeed
what we find both for helium 3 (see figure 2) and for electrons (see figure 3). Moreover, for the
Wigner crystal, we find that AP is always of the order of unity. But the relative values of the
J s change from the WKB limit to the strong-fluctuation scenario near the melting transition.

Introducing the J s in the effective MSE Hamiltonian of equation (3), we now consider the
character of the ground state. Limiting this analysis to the first important loop exchanges (two-,
three-, four-, five- and hexagonal six-body exchange), the magnetic phase diagram is deduced
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Figure 2. Helium-3 adsorbed on graphite: first-layer exchange frequencies versus the density.

Figure 3. Exchange energies versus r1/2
s . For rs � 50, non-exchanging electrons are

distinguishable, and for rs � 50, the neighbouring electrons are spin polarized (preliminary results).
One can see that near melting, exchange energies become comparable with the kinetic energy [8].

from exact diagonalizations on small periodic samples [12]. The number of parameters can
be reduced by taking one of them to scale the energies. In addition, for spin- 1

2 , by using the
identity Pi jk + P−1

i jk = Pi j + Pjk + Pki − 1, an effective pair exchange is defined which on the
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triangular lattice reads J eff
2 = J2 − 2J3. Because J eff

2 can be positive or negative, J4 is chosen
to scale the energies.

The frustration of this Hamiltonian comes from two factors:

(i) geometrical frustration caused by the triangular lattice: even the simplest Heisenberg
model is frustrated, but it has a Néel long-range order [13];

(ii) coupling competition: there are ferromagnetic coupling (the three- and five-body loops)
and antiferromagnetic ones (the two-, four- and six-body loops).

A ‘plane’ in Hamiltonian space separates the phase diagram into a ferromagnetic region (large
negative J eff

2 or large positive J5) and an antiferromagnetic region (large positive J eff
2 or J4

or J6) (see figure 4). In agreement with WKB calculations in the strong-coupling limit, both
helium and the Wigner crystal are ferromagnetic, since the three-particle exchange dominates.
As shown on the phase diagram (figure 4), both the Wigner crystal and the second solid layer
of helium-3 adsorbed on graphite become antiferromagnetic well before the melting transition.
Instead of having a simple transition between two ordered states, as will be the case for the
Heisenberg model (of equation (1)), the larger loops of four-body exchanges become important
simultaneously when J2 becomes of the same order of J3. In the antiferromagnetic region,
the point (J eff

2 /J4 = −2, J5 = J6 = 0) presents a RVB-type ground state with a gap to all
excitations. It is likely that most of this region of the phase diagram will be a single phase of
spin liquid [12]. In the range of densities presented in figure 2, far from the melting transition,
the first layer of helium-3 adsorbed on graphite is always ferromagnetic.

4. Approaching the melting transition

A remarkable feature is the similarity of the relative exchanges of the two solids when
approaching the melting transition: the trajectories in the Hamiltonian space as a function
of density (see figure 4) approach each other. Yet the interactions of these two systems are
very different: a short-ranged strongly repulsive potential for helium and a long-ranged smooth
potential for electrons. An underlying universal mechanism is suggested, possibly due to virtual
vacancy–interstitial (VI) excitations [10]).

Here, we address the question of how the important exchanges depend on the density in
the Wigner crystal. The figure 5 shows how the relative values of the J s change with density.
At large rs (small density or the strong-coupling limit), J eff

2 (in fact J3) is the dominant
exchange. Down to rs ∼ 100, the J2–J4 model is relevant and other exchanges are only weak
perturbations. For smaller rs , the five- and six-body exchanges start to play a role, as can be
seen also in the phase diagram (figure 4).

At even smaller rs , we see in figure 5 that all exchanges become of the same order of
magnitude. Therefore, to limit the MSE Hamiltonian to loops of sizes two to six is questionable
and we must look at larger loops. In addition, the importance of each type of exchange depends
not only on the J s but also on the number of equivalent exchanges in the Hamiltonian. This
number increases exponentially with the loop size n. The mean 〈Jn〉 and total J (T )

n exchange
for loops of length n are defined by

〈Jn〉 = 1

nT

∑
shape

nshape J (shape)
n , (5)

J (T )
n = nT 〈Jn〉, (6)

where nshape is the number of equivalent exchanges per site of a given shape and nT =∑
shape nshape. As seen in figure 5, even if the hexagonal exchange is larger than the five-

body exchange, the mean six-body exchange remains smaller.
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Figure 4. The zero-temperature magnetic phase diagram of the MSE Hamiltonian [12].

The importance of exchanges of length n can be measured by J (T )
n . All the six- and

seven-body exchanges have been calculated at rs = 40 and 50. 〈J8〉 has been evaluated from a
selection of 8 shapes amongst 17 possible eight-body shapes. At rs larger than 75, we see that
loops of length larger than 4 are indeed small perturbations. At rs = 50, five- and six-body
loops are no longer negligible and additional data are needed to judge the importance of even
larger loops. At rs = 40, we see that the exchanges of the largest loops lead to the most
important contribution in the Hamiltonian.

The Curie–Weiss temperature θ is directly expressed in terms of J (T )
n as (note that

J (T )
2 = 3J2, J (T )

3 = 4J3, J (T )
4 = 6J2, J (T )

5 = 12J5)

θ =
nmax∑
n=2

(−1)nWn J (T )
n with Wn = −3

n(n − 1)

2n−1
. (7)

Figure 6 shows the relative importance of loops of length n in this sum. At rs = 40,
convergence is clearly not reached.

A better way to look at the importance of various exchanges is via their contribution to the
specific heat. At high temperature, the leading term of the MSE Hamiltonian can be written as

CV ∼ 9

4
NkB

(
JCV

T

)2

(8)

where J 2
CV

is a positive quadratic form of the J s. JCV is used to scale temperatures and measure
the typical energy associated with the spin correlations. Figure 7 shows the corrections of
loops of size n to JCV . At the smallest rs , even if the convergence is not clearly established, no
divergence seems to occur. A divergence of JCV means a breakdown of the energy separation
hypothesis needed in the Thouless theory. Interestingly, the breakdown appears when the
melting transition takes place, leading naturally to the idea that the origin of the melting might
be related to a divergence in the importance of very long loops of exchanges, perhaps caused
by the unbinding of VI pairs.
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Figure 5. Relative exchange energies for the Wigner crystal versus r1/2
s . The labels 6P, 6T, 6B

stand for parallelogram, large triangle and the hexagonal shape where a site is replaced by the centre
of the hexagon. Dashed lines are extrapolated guide lines. Note that all these values become of the
same order of magnitude at smaller rs . The dotted line represents the mean six-body exchange as
defined by equation (5).

Figure 6. The importance of loops of length n (relative to J3) to the Curie–Weiss temperature
versus the length n of the loops for different rs .
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Figure 7. The importance of loops of length n (relative to J eff
2 ) to the specific heat versus the length

n of the loops for different rs . The values correspond to the corrections due the loops of order n to
JCV defined by equation (8) including loops up to order n − 1.

5. Conclusions

For fermionic solids, PIMC allows one to evaluate exchange energies. These energies are then
coupling parameters in a MSE Hamiltonian which can be studied by different techniques such as
exact diagonalization. It is found that various two-dimensional systems have a dominant three-
body exchange in the semi-classical limit (strong coupling) leading to a ferromagnetic ground
state. As the quantum kinetic contributions increase, all exchanges become comparable with
competitive ferromagnetic and antiferromagnetic interactions. Near melting it is found that
the relative exchanges in the Wigner crystal are very similar to those obtained for a solid layer
of helium-3 adsorbed on graphite, suggesting a possible universal behaviour of the exchange
mechanism near the melting transition. Such mechanism could explain the importance of
large-loop exchanges near the melting transition, even if no direct relation is yet proven.
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